
ISRAEL JOURNAL OF MATHEMATICS,  Vol. 73, No. 3, 1991 

EXISTENCE AND UNIQUENESS OF PACKINGS 
WITH SPECIFIED COMBINATORICS 

BY 

ODED SCHRAMM 
Mathematics Department C-012, University o f  California-San Diego, La Jolla, CA 92093, USA 

ABSTRACT 

Generalizations of the Andreev-Thurston circle packing theorem are proved. One 
such result is the following. 

Let G = G (V) be a planar graph, and f o r  each vertex v E V, let ~ be a proper 
3-manifold o f  smooth  topological disks in S 2, with the property that the pattern 
o f  intersection o f  any two sets A ,  B E ~Yv is topologically the pattern o f  intersec- 
tion o f  two circles (i.e., there is a homeomorphism h : S z -~ S 2 taking A and B to 
circles). Then there is a packing P = (Pv : v E V) whose nerve is G, and which 
satisfies Pv E 5 v f o r  v E V. ( 'The nerve is G'  means that two sets, Pv,Pu, touch, 
if, and only if, u ~ v is an edge in G. ) 

In the case where G is the 1-skeleton of a triangulation, we also give a precise 
uniqueness statement. Various examples and applications are discussed. 

1. Introduction 

Consider a packing of  circles in the sphere or the plane; that is, an indexed col- 

lection of circles Q = (Qv: v E v) having disjoint interiors. The nerve of the 

packing is a graph whose vertex set is V and which describes the combinatorics of 

the packing. An edge will appear between two vertices in V if, and only if, the cor- 

responding circles touch. One sees immediately that the nerve of such a circle pack- 

ing is planar. It was an observation of  Thurston ([Thl], [Th2]) that Andreev's 

theorem ([Anl], [An2]) implies that the converse also holds. Given a finite planar 

graph (without loops or multiple edges) there exists a circle packing on the sphere 

whose nerve is the given graph. Moreover, when the graph is a triangulation (i.e., 

the 1-skeleton of a triangulation of the sphere) this circle packing is unique up to 

M6bius transformations. We will refer to this beautiful fact as the Andreev- 

Received July 12, 1990 

321 



322 O. SCHRAMM Isr. J. Math. 

Thurston circle packing theorem. It has interesting applications, including appli- 

cations to the theory of  conformal  mappings. See [Thl],  [R-S], [He], [Schl]. 

In [Schl] we have generalized the Andreev-Thurston circle packing theorem to 

packings of  sets other than circles. (The nerve of  these more general packings is 

defined in the same manner, and is still planar in the well-behaved cases.) One such 

generalization is the following. 

1.1. CONVEX PACKtN6 T~EOREM. Let G be a finite planar graph on the vertex 

set V. For each v C V let Pv be some smooth convex body in the plane. Then there 

exists a packing Q = ( Qv : v E v)  in the plane whose nerve is G, and with Qo pos- 

itively homothetic to Pv for  every v E V. 

One obtains the existence part of  the Andreev-Thurston theorem from the above 

when one takes all the P~ to be circles. The packing can be lifted to the sphere via 

stereographic projection. 

In the metric packing theorem, which also appears in [Schl], for each v E V one 

is given a Riemannian metric d~ on the sphere, and one gets a packing Q with the 

specified nerve and where each Q~ is a ball for the metric d~. 

A shortcoming of these results in [Schl] is that they do not contain any unique- 

ness statement, as does the Andreev-Thurs ton theorem. In fact, the arguments 

there also give packings for which no reasonable uniqueness statement holds. In 

this note we prove a packing theorem (see 3.2, 3.5) which includes the convex pack- 

ing theorem and the metric packing theorem as particular cases, and has the vir- 

tue of  having a precise uniqueness statement. It is just about the most general 

packing theorem of this kind that one could hope for (it is more general than I 

have ever hoped for). It has applications to conformal  uniformizations of  multi- 

ply connected domains (as in [Schl]). Other applications, as well as precise state- 

ments of  the results, are presented in Section 3, after we introduce some definitions 

in Section 2. 

The technique here is independent of that in [Schl]. This paper is self-contained, 

except for a use of the incompatibility theorem of [Sch2], which is actually our cen- 

tral tool. 

2. Some definitions and notations 

Some of the definitions we use appear also in [Sch2]; we repeat them for the sake 

of  completeness. 

For us, a packing will mean an indexed collection P = (P~. : v E V) of  compact 

connected sets in the sphere S 2 or in the plane, with the property that the interior 
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of  each set Po is disjoint from the other sets Pw, w :~ v. A packing is nondegener- 

ate if no point belongs to more than two of the sets in the packing. When we use 

the term 'packing' ,  we will mean 'nondegenerate packing' ,  unless we specifically 

state otherwise. 

It is tempting to consider only packings by smooth topological disks, for the sake 

of  simplicity. There are two reasons for not doing so. First, a nice application is 

for packings of  balls of  path metrics, and these are sometimes not topological disks 

(and therefore not smooth), even in the Riemannian case. Second, dealing with the 

more general case does not involve any additional significant complications, mostly 

a few more definitions. We will work mostly with sets which we call blunt and disk- 

like (definitions follow). The reader may wish to consider only the case where disk- 

like means topological disk, and blunt means smooth. 

For any A C S 2 let A ~ = S 2 - A denote the complement of  A. 

A proper subset A C S z will be called disklike if it is the closure of  its interior, 

its interior is connected, and the complement of  any connected component of  A c 

is a topological disk. A disklike A is blunt if for every point p E OA there is a 

smooth set contained in A and containing p. (To put it differently, the angle of  A 

at any boundary point of  A is at least 7r, but we use the above definition, because 

we do not want to worry if the angle is defined.) The idea is that a packing of blunt 

sets has to be nondegenerate. For example, a ball of a Riemannian (or Finsler) met- 

ric on S 2 is disklike and blunt. 

The nerve of a packing P = (P~. : v E V) is a graph whose vertex set is V, and 

which is defined by the property that there is an edge between two distinct verti- 

ces, v, w, if and only if the corresponding sets, P~., Pw, intersect. Note that there 

is at most a single edge between v, w in the nerve, even if P~, and Pw intersect in 

more than one place. If  G is a graph, we will use the notation G(V)  to mean that 

V is the vertex set of  G. 

Let T be a triangulation of the sphere S 2, and let G be the 1-skeleton of T, con- 

sidered as an abstract graph. It is easy to see that G determines T up to a 

homeomorphism of S 2. For this reason we will be sloppy, and will not distinguish 

between a triangulation and its 1-skeleton. 

Let G be a finite graph embedded in S 2, and let B be a simple closed path in G. 

We will say that G is a triangulation with boundary B, if G - B is connected, and 

if G has an embedding in the sphere where all the connected components of  the 

complement are triangles (that is, bounded by three edges of  G), except possibly 

for one component  bounded by B. If B has precisely four vertices, then G will be 

called a triangulation o f  a quadrilateral. 

A quadrilateral is a closed topological disk D in S 2 with four distinguished 
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points Po,Pl,P2,P3 on its boundary that are oriented clockwise with respect to the 

interior of  D. Di will be used to denote the arc of  the boundary of  this quad- 

rilateral which extends clockwise from Pi-i to Pi, with P4 standing for Po. Such a 

quadrilateral will be denoted by (Dj ,DE,D3,D4), by D(po ,P l  ,PE,P3), or just by 

D, depending on convenience. 

Similarly, a trilateral D = (D1,D2,D3) is defined as a topological disk with 

three distinct distinguished clockwise oriented points on its boundary.  These are 

referred to as its vertices. A trilateral D will be termed cornered if there is no 

smooth set contained in it and containing one of  its vertices (e.g., the angles there 

are < 7r). A trilateral is decent if it is cornered and the intersection of  OD with any 

two smooth interiorwise disjoint subsets of  D is empty (i.e., it has no inward cusps 

of  angle 27r). 

The reason for this definition is that we will consider packings (Pv : v E V) in 

a trilateral D = (DI,D2,D3) which have D~,D2,D3 as three of  the packed sets, 

say P~ = D~, Pb = D2, Pc = D3.  I f  the other sets in the packing are blunt, and if 

the trilateral is decent, then the packing is automatically nondegenerate. 

We use the following notion of  convergence of  subsets of  S 2. Let An, n -- 

1,2,3 . . . . .  be a sequence of  closed subsets of  S 2. We shall say that this sequence 

converges to the set A C S 2 if l imsupAn = l iminfAn -- A ,  and A c = inte- 

r ior( l imsupA~).  ( l imsupAn is the set of  all accumulation points for sequences 

(xn) with xn E An. lira infAn is the set of  all limit points for such converging se- 

quences (xn).) The reason for this definition is the following. Let (An), (Bn) be 

sequences of  closed subsets o f  S 2. Assume that each An is the closure of  its inte- 

rior, that interior(An) (3 Bn = ~ ,  and that An ~ A, Bn -~ B. Then it follows that 

interior(A) (3 B = Q. This property will allow us to take limits of  packings and 

obtain a packing. 

Let U be an open subset of  S 2, and let 5: be some collection of subsets of  U. 

5: will be called a continuous collection on U if for every sequence of sets (An) in 

3: which are all contained in some compact  proper subset of  U there is some sub- 

sequence (An~) so that An~ converges to some set A E ~Y, or limsupAn~ -- (a 

point). 

3. The main results and some applications 

To prepare for the statement of  the main theorem let us consider an elementary 

packing problem. Let D = (Da,Db,D~) be a trilateral in the sphere or in the 

plane. We will say that a set A packs this trilateral D if A C D and A intersects each 

of  the three edges of  D, Da,Do,D¢. 
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It is not hard to see, and is also proved below, that the collection of  all circles 

on the sphere has the property that for each cornered trilateral in S 2 there is a 

unique circle which packs it. The same statement holds in the plane for the collec- 

tion of  all sets positively homothetic to a given smooth strictly convex set, or for 

the collection of balls of  a given Riemannian or Finsler metric. (See 3.3 below.) It 

turns out that this is the essential feature which permits us to ' pack '  these 

collections. 

3.1. DEFINITION. Let U be some open subset of  S 2, and let 5: be a continuous 

collection of  blunt disklikes in U. If  for every cornered trilateral in U there is a 

unique set in 5: which packs that trilateral, then we will say that 5: is a packable  

collection on U. 

Our main result justifies this definition: 

3.2. PACKING THEOREM. Let U be some  open subset o f  $2. Let  T = T ( V )  be 

a triangulation o f  the sphere S 2, let [a,b,c] be a triangle in T, and f o r  v E V -  

[ a, b, c } let 5:v be a packable  collection on U. Then, given a decent trilateral D = 

(Da,Db,Dc)  C U, there exists a unique packing P = (Pv: v E V) contained in D 

whose nerve is T and which satisfies Pv E 5:v, v E V - [ a, b, c } and Pv = Dv, v = 

a, b, c. 

Note that there are no requirements on any relation between the collections 5:~, 

but only requirements on each particular collection. This is quite surprising. 

The definition of packable, 3.1, was chosen, from other equivalent definitions, 

because it is most natural, but not because it is easy to verify. Below (3.5), we will 

see that there are equivalent, more concrete, definitions. 

A particular case of  Theorem 3.2 says that given a triangulation T(V) of the 

sphere, and for each v E V a packable collection 5:v on S 2, there exists a packing 

P = (Pv : v E V) whose nerve is T and which satisfies P~ E 5:~ for v C V. Further- 

more, this packing is unique once the sets corresponding to three vertices of  a tri- 

angle are fixed. 

I f  G = G(V)  is a planar graph, but not a triangulation, and for v @ V, 5:~ is 

packable on S 2, then we can certainly embed G in a triangulation of the sphere 

which does not have any edges between vertices in G, except for those edges which 

are already in G. Thus, using Theorem 3.2, we see that there exists a packing 

P = (P~ : v E V) C S 2 whose nerve is G and which satisfies P,  E 5:~, v E V. So 

the existence part of  Theorem 3.2 also applies to planar graphs which are not 

triangulations. 

Our method of proving 3.2 is the following. First, the incompatibility theorem 
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o f  [Sch2] is used to establish uniqueness. Uniqueness then gives the continui ty o f  

the packings in the data.  Cont inui ty  is then used with induct ion to establish 

existence. 

One application o f  3.2 is giwm by the following. 

3.3. METRIC PACKING THEOREM. Let U C S 2 be open and connected, and let 

d be a Riemannian [or, more generally, a possibly nonsymmetric Finsler] metrict 

on U. Then the collection of  all (proper) balls of  d is packable on U. 

By a ' p roper '  ball, we mean a compact  ball o f  positive radius which is strictly 

contained in U. 

When one works with nonsymmetric metrics there are two distinct kinds o f  balls, 

left balls, [x :d(c ,x )  <_ r], and right balls, {x:d(x ,  c) <_ r}. The above holds when 

one considers as 'bails '  either kind (but, for uniqueness, not  both). We will restrict 

our  at tention to left balls. 

The following impor tan t  special case o f  the metric packing theorem uses the 

more  general Finsler metrics. Let C be some smooth  strictly convex planar body  

containing the origin 0 in its interior. The funct ion d (  . , .  ) defined by 

d(O,z) = min{t_> 0 : z  E tC], 

d (w,z )  = d ( O , z -  w) 

is a Finsler metric on R 2 whose balls are precisely the sets positively homothet ic  to 

C. Thus,  using 3.3, 3.2, we obtain an existence and uniqueness result for packing 

smooth  strictly convex sets specified up to homothe ty .  The convex packing theo- 

rem o f  [Schl] contains the existence part  o f  this statement.  The p r o o f  there is to- 

tally different. 

Before we proceed to discuss a geometric application for the packing theorem 

3.2, we will state a theorem which gives equivalent condit ions for  a collection o f  

sets to be packable,  but  first we need to introduce the concept  o f  compatibil i ty.  

(See also [Sch2].) 

3.4. DEFINITIONS. Let A be a subset o f  the sphere S 2, and p ,q  E S 2. We 

will say that  a curve 3' connects p and q in A,  if the endpoints  o f  3' are p,  q and 

relint(7) C A. Here, and in the following, relint(3') means 3' - {its endpoints l .  

?For the reader who struggles to recall the definition of a Finsler metric, the properties that we will 
use are that a Finsler metric is a path metric, that its balls are blunt, and that it has the unique exten- 
sion property. That is, if two length minimizing paths share a nontrivial initial segment, then one is con- 
tained in the other, 



Vol. 73, 1991 PACKINGS WITH SPECIFIED COMBINATORICS 327 

Note that p and q do not have to be in A to be connected by a curve in A, they 

may be in A - A. 

Let A , B  be two closed topological disks in the sphere. We will say that A cuts 

B, if there are two points in B - interior(A) which are not connected by any curve 

in interior(B) - A. A and B are incompatible, if A ~ B, and A cuts B or B cuts 

A. Otherwise, they are compatible. See Fig. 3.1. 

I f  A, B are disklikes, then they will be considered compatible if A -- B or for ev- 

ery connected component  A'  of  A c and every connected component  B '  of  B C, A 'c 

and B 'c are unequal and compatible. In other words, either A = B, or whenever 

you adjoin to A all but one of  the connected components of  its complement and 

do the same to B, the resulting topological disks are unequal and compatible. (This 

definition is, in turn, compatible with the definition for the case where A, B are to- 

pological disks.) 

3.5. THEOREM. Let U be a nonempty open simply connected subset of S 2, and 

let • be a collection o f  blunt disklikes in U. The fol lowing conditions are 

equivalent. 

(1) • is packable on U. 

(2) 5: is a continuous collection on U, it is a 3-manifold, and every two sets 

A ,  B E • are compatible. 

(3) ~Y is a continuous collection on U, it is a 3-manifold, and to each cornered 

trilateral D C U there is at most  one set in • which packs  it. 

When we say that 5: is a 3-manifold, we mean that it is a 3-manifold in the to- 

pology induced by our notion of convergence of  subsets of  S 2. (See the previous 

section.) 

(a) 

( "i!il~q' • ,: 

(b) 

Fig. 3.1. (a) Some compatible pairs. (b) Some incompatible pairs. 
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The restriction in Theorem 3.5 that U must be simply connected is not signifi- 

cant: a continuous collection of blunt disklikes 5: is packable on an open set U if, 

and only if, for every open simply connected W C  U, 5:]w = [A E 5: :A C W] is 

packable on W. This is so, because every trilateral D C U is contained in such a W. 

We now introduce two other classes of  collections which are packable, and give 

a geometric application. 

Let K be a smooth strictly convex body in R 3. Consider some closed (affine) 

half space H + determined by some plane H which intersects interior(K).  The in- 

tersection F ( H  +) = H + 0 OK is a smooth topological disk in OK. Let 5: be the 

collection of all subsets F ( H  +) C OK obtained in this manner.  We may identify 

OK with S 2 by some diffeomorphism. 

3.6. THEOREM. The above 5: is packable on OK. 

PROOF. We will use 3.5(2). Let H + be a half space whose boundary,  H,  inter- 

sects interior K. H 0 OK is a (convex) smooth simple closed curve, by strict con- 

vexity of  K, and so 5: is a collection of smooth topological disks. It is clear that 

5: is a continuous collection on OK, and is a 3-manifold. 

To prove compatibility, consider two distinct hyperplanes. Their intersection is 

a line, or empty. A line intersects OK in at most two points, by strict convexity of  

K. Thus the boundaries (relative to OK) of two distinct sets A , B  E 5: intersect in 

at most two points. If  the boundaries intersect in less than two points, then A, B 

are clearly compatible. Otherwise there is a point p in interior K and in the line of  

intersection of the two planes. Looking from p, A and B look exactly like circles. 

(This means that the images of  their projection on a small sphere centered at p are 

circles.) Thus they are compatible. It follows f rom 3.5 that 5: is packable. • 

A dual example is the following. Consider some point s E R 3 - -  K, and think of 

it as a satellite hovering over K. Let F(s) be the visual territory of s; that is, the 

set of  points in OK that the line segment f rom them to s does not intersect the in- 

terior of  K, and let F'(s) be the closure of  the complement of  F(s).  

We now broaden our horizons a little, and consider R 3 as being contained in 

real projective 3-space PR 3, then, looking from s, there are some directions where 

OK can be seen. If  l is a line passing through s and intersecting K, then, when look- 

ing from s along I in one direction, one sees a point in F(s ) ,  and in the other di- 

rection, one sees a point in F ( s ) .  We thus conclude that there is a projective 

description for sets of  the type F(s) ,F ' ( s )  : let os be one of  the two connected 

components of  the set of  directions at s such that the oriented line through s in that 

direction intersects K, and let F(s, os) be the collection of  the first points on OK 
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on any of  these lines. Let 5:* be the collection of  all sets of  the type F(s,  os), 

where s E PR 3 - K, and os is as above. 

3.7. THEOREM. The above ~Y* is packable on OK. 

PROOF. Also easily follows f rom 3.5. • 

The following is a geometric application of Theorems 3.6, 3.7. 

3.8. COROLLARY. Let K be a smooth strictly convex body in R 3, and let P be 

a simple or simplicial 3-polytope. Then there exists a 3-polytope P', which is com- 

binatorically isomorphic to P, and which midscribes K. That is, all the edges o f  P'  

are tangent to K. 

In the case where K is a geometric ball, the corollary was proved by Thurston 

[Thl] (without restrictions on the combinatorial  type of  P) ,  using the Andreev-  

Thurston theorem, and the proof  outlined below is an immediate generalization 

of  that proof,  where the Andreev-Thurs ton theorem is replaced by 3.6, 3.7. This 

corollary is also true without any restriction on the combinatorial  type of P, and 

a proof  for that general case (which is not a direct generalization of the proof  here 

or in [Thl]), as well as background and references, appears in [Sch3] (also see 

[Schu] for background).  

I am indebted to Egon Schulte for advising me to try to apply the more general 

packing theorems to get this corollary. 

PROOF OF COROLLARY 3.8, SKETCH. Suppose that P is simple; that is, every ver- 

tex of  P belongs to precisely three faces. Let G = G(V)  be the graph dual to the 

1-skeleton of  P. Since P is simple, G is a triangulation. By 3.6, 3.2, there exists a 

packing P = (Pv : v E V) on OK whose nerve is G, and with Pv = F(H~+), v E V, 

for some half spaces H f (notation described above). 

Let P '  be the intersection of the opposite half spaces H~-, and let G '  = G '  (V) 

be the adjacency graph of  the faces of  P' .  That is, an edge u ~ v appears in G ' ,  

if and only if the intersection of the corresponding planes is an edge of the poly- 

hedron P' .  

Saying that two sets Pv, Pu touch is the same as saying that the intersection of 

the corresponding planes Hu, Hv is a line tangent to K. (It is tangent at the inter- 

section Pv (1 P~.) Because P is a packing on OK with nerve G, it follows that ev- 

ery edge of G appears also in G 2 But G '  is planar, and G is a triangulation, so 

G = G'. I f  P '  is bounded, then it is a polytope, and it readily follows that P '  is 

combinatorically isomorphic to P. In general, it is not necessarily true that P '  is 

bounded, but it is not difficult to show that one can get such a bounded P' .  
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(Remember, we can choose the sets corresponding to three neighboring vertices in 

G.) An unbounded P' gives a projective polytope midscribing K. 

For the case where P is simplicial, rather than simple, one can either dualize the 

result above, using a dual of K, or write a dual proof, using 3.7, in place of 3.6. 

We close this section with a remark about Definition 3.1 and Theorem 3.2. For 

a continuous collection of  blunt disklikes to be packable we have required that for 

each cornered trilateral there is a unique set in the collection which packs that 

trilateral. Then Theorem 3.2 yields uniqueness and existence of  packings in decent 

trilaterals. It is possible to weaken the hypotheses and to require that for each de- 

cent trilateral there is a unique set in the collection which packs it, and still get the 

same conclusions. However,  the modifications needed in the proof  are technical 

and uninteresting. 

4. Proof of the Metric Packing Theorem 3.3 

PROOF OF 3.3. We will use Theorem 3.5, which will be proved in later sections. 

Let 5: d be the collection of  proper (left) d-balls. It is immediate that 5:a is a con- 

tinuous collection of blunt disklikes on U and, clearly, it is a 3-manifold, param- 

etrized by center and radius. It follows f rom the remark following 3.5 that it is 

sufficient to consider the case where U is simpty connected, and we restrict our at- 

tention to this situation. Let D = (D1,Da,D3) be a cornered trilateral in U. By 

3.5(3), it remains to prove that there is at most one (left) d-ball which packs D. 

Suppose that p and q are centers of  d-balls which pack D. We must show that 

p = q. Assume p :~ q. Let r = d(p, OD) be the radius of  the ball B with center p 

which packs D. We know that 13 doesn't  intersect the vertices of  D, because B is 

blunt and D is cornered. 

Let 71, 3'2 and 3'3 be paths of  length r f rom p to D1, D2 and D3, respectively. 

Consider some point s E 3'1, s :~: p. We will now show that the distance f rom s to 

D2 U D3 is bigger than its distance to D1. If  d(s, D2 LI D3) - d(s, D1), then the 

path 3' which follows 3'1 from/;,  to s, and then takes a shortest route to D2 LI D3 

would have length 

length(3") = d(p,s)  + d(s,D:, U 93 ) <- d(p,s)  + d(s, Dl) = length('y1) = r. 

This means that it is a shortest path from p to D2 U D3, and has length r. Because 

the metric has the unique exten,;ion property (two length minimizing paths of  the 

same length which share a nontrivial initial segment must be the same), it follows 

that 3' = 3'1. This implies that the terminal point of  3'1 is on D~ N (D 2 [,.) D3).  
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Fig. 4.1. The paths 3'1,3'2,3'3 and the region R 3. 

However, this is impossible, because B does not intersect the vertices of D. We thus 

conclude that d(s, D2 (.J D3) > d(s, D1). A similar result holds for points s in 

7¢2 - (P l ,  or in "r3 - {P}. It also follows that the paths "~1,'~2,'~3 are disjoint, ex- 

cept at p. 

Let R 3 be the closure of the region of D which is determined by "Yz and "r2 and 

is disjoint from D 3. See Fig. 4.1. By symmetry we may, and will, assume that 

q E R3. Let 63 be a shortest path from q to D3. It must intersect 3'1 U 7/2. Suppose 

that s is a point in this intersection. 

Consider the case where s is on "yl, and is not p. We have seen above that 

d(s, D1) < d(s, D2 U D3). But, because s is on 63, a similar argument, with 

q replacing p, shows that d(s, D3) < d(s, Dl U D2), if s :g q, or d(s, D3) = 

d(s, Dl U D 2 )  , if s = q. So, in both cases, we get a contradiction. A contradic- 

tion is reached similarly, if p :~ s E 2¢2- The remaining case, p = s, would give 

d( q, ~D) = d( q, D3) > d(p, OD). A symmetric argument (exchanging p, q) would 

lead to the opposite conclusion, and thus a contradiction is reached in this last case 

also. This completes the proof. • 

5. Uniqueness of packings 

The major tool at our disposal is the incompatibility theorem from [Sch2], which 

is restated here for the convenience of the reader. 

5.1. INCOMPATIBILITY THEOREM ([Sch2]). Let T = T(V) be an oriented trian- 

gulation of a quadrilateral with boundary vertices a, b, c, d, in clockwise order with 

respect to the other vertices of  T (if  such exist). Let D = (D1,D2,D3,D4) be a 
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quadrilateral in S 2. Suppose that Q = ( Qo : v E V) and P = ( Po : v E V) are two 

nondegenerate packings in D, both having nerve T, and their orientations agree 

with that o f  T. Further suppose that Qo and Po are disklike f o r  v E V -  { a, b, c, d ], 

that P~ C Dl,  Qo c 02 ,  Pc C D3, Qd D 04, and that Po is disjoint f r o m  Qd fo r  

v E V - [ a, c, d]. Then there is some vertex v E V - { a, b, c, d} f o r  which Qo and 

Po are incompatible. 

Our intermediate goal is to prove 

5.2. PROPOSITION. Theorem 3.2 holds i f  the collections ~ also satisfy the con- 

dition that any two sets A , B  E ~ are compatible. 

But first we need 

5.3. UNIQUENESS LEMMA. Let T = T ( V )  be a triangulation o f  S 2, and let 

[a,b,c] be a distinguished triangle in T. Let D = (Da,Db,Do) C S 2 be some 

trilateral. Let Q = (Qo: v E v )  and P = (Po: v E V) be two nondegenerate pack- 

ings in D having nerve T and satisfying Qo = Do = Pv, v = a, b, c. Further assume 

that, for  v E V - { a, b, c ], Qv and Po are disklike compatible sets. Then these two 

packings are the same: Q~ = P~, b E V. 

PROOF OF 5.3. The proof will be an easy application of the incompatibility 

theorem. Consider first the case where all the Qo,Pv, v ~ a, b,c, are topological 

disks. We proceed by induction on the number of  vertices in T. The case V = 

{a,b,c] is clear. So we will assume that Thas  more than three vertices, and that 

the lemma holds for triangulations with fewer vertices than T. 

Let d be the unique vertex other than b which forms a triangle together with a 

and c. In other words, [a,c,d] and [a,b,c] are the two triangles that have the edge 

a ~ c on their boundary. 

With the intention of arriving at a contradiction, we will assume now that 

Qd ~ Pa. Let r be a point in the intersection Qd N Da, and let s be a point in the 

intersection Qd 0 D c. Likewise, let r '  E Pd N Da, s' E Pd n Dc. Because the pack- 

ings are nondegenerate, r ~ s and r '  :~ s'. r and s are certainly in the complement 

of  interior(Pd), and therefore, by compatibility of Qd and Pal, there is a simple 

curve a which connects them in interior(Qd -- Pal). Likewise, there is a simple 

curve a '  which connects r' ,s '  in interior(Pal - Od). There are two cases to con- 

sider. Either a separates Pd from Db in D, or o~' separates Qd from Db in D. See 

Fig. 5.1. (Since a can possibly intersect Pd at r or s, what we mean by 'c~ separates 

Pd from Do in D '  is that Pd -- {1;S} and Db are in different connected components 

of D - a. Similarly for the other case.) By symmetry, we need to consider only one 

of  these cases, so assume that t~' separates Qd from D b in D. 
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I 

Fig. 5.1. ~' separates Qa from D~. 

From this fact, that a '  separates Qa from Db in D, it follows that all the sets 

Pv, v ¢ d, are disjoint from Qa, because they must be on the side of  a '  which 

contains Db (since T -  [a ,c ,d}  is edge-connected). 

The curve a cuts D into a trilateral and a quadrilateral. Call the quadrilateral 

r). l )  = (0{)  (1D,,, Or) N Db, O ~O 0 Dc, o~ ) . Define (~v = Qv O / )  and P~ = Pv (1 

for all v E V. Then Q~ = Qo for v :g a, c, d and Pv = P~ for v 4: a, c. The packings 

and 15 in the quadrilateral/)  satisfy the hypotheses of the quadrilateral theorem, 

and therefore there is some v E V - {a, b, c, d l for which (~  and P~ are incompat- 

ible. But this would imply that Qo and Pv are incompatible, contrary to our as- 

sumptions. This contradiction shows that Qd = Pal. 

Having established Qd = Pal, the equivalence Q~ - Po, v E V, follows easily 

from the inductive hypothesis. This completes the proof of the uniqueness lemma 

in the case where the Qv,P~, v :~ a, b, c, are topological disks. 

For v :~ a, b, c let Q~ be the topological disk obtained from Q~ by adjoining to 

Q~ the connected components of  Q~ (the complement of Qv) except for the con- 

nected component whose closure contains all the other sets in the packing Q. Let 

Q'  be the packing (Q,', : v E V), with Q~ = Q~,, v = a, b, c, and let the packing 

P '  = (P~: v E V) be defined analogously. The above proof  implies that P '  = Q'. 

From compatibility of Po and Qo, v 4= a,b ,c ,  it follows that Po = Qv, completing 

the proof. • 

6. Existence of packings 

PROOF OF 5.2. The uniqueness part clearly follows from the uniqueness lemma, 

and thus it remains to prove existence. Existence will also be proved by induction. 

The basic approach is to use uniqueness to show that the packings for triangula- 
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tions simpler than T are continuous in the data, in particular, continuous in the 

given trilateral. From this continuity, the existence for the triangulation T then 

follows. 

The base of  the induction is the case where a, b, c are the only vertices in V, and 

there is nothing to prove in that case. Thus we assume that T has more than three 

vertices, and that the theorem has been proven for triangulations with fewer ver- 

tices than T has. 

We will deal first with the eas.y case, in which there are three vertices of  T, say 

f ,g ,  h, of which every two share an edge, but they do not form a triangle in T. In 

this case we say that T is decomposable for the following reasons. The three edges 

going between these vertices f ,g ,  h determine two regions of T, say R1,R2. Let 7"1 

be the triangulation formed from T by dropping all the vertices in R~ and all the 

edges adjacent to them. Similarly, let T2 be the triangulation formed from T by 

dropping all the vertices in R 2 and all the edges adjacent to them. (The three ver- 

tices f,  g, h form triangles in 7"1 and T2. That is the reason why 7"1 and T2 are tri- 

angulations.) Because f,  g, h do not form a triangle in T, we know that there are 

some vertices in each of the regions R~ , R  2. Therefore the triangulations 7"1, T2 

have fewer vertices than T, and the inductive hypothesis can be applied to them. 

Without loss of  generality, assume that the three vertices a, b, c are in 7"1. 

From the inductive hypothesis applied to T~ we get a packing Q~ = (Q1 : v E 

Vl) in D whose nerve is 7"1 and which satisfies Q~ = Dr, v = a, b, c, and Q~ E ~Yv, 

v E I/1 - [a, b, c]. The three touching sets Q~, v = f ,g ,  h, determine a decent 

trilateral D 2 which is disjoint from all the other sets Q~, v E vl - [ f ,g ,h} .  We 

now apply the inductive hypothesis to T2, to obtain a packing Q2 = (Q2 : v ~ v2) 

whose nerve is T2 and which satisfies Q2 = Q~, v = f , g , h ,  and Q2 E ~,~, v E V2 - 

{ f ,g ,h} ,  Q2 c D2, v E V2 - { f ,g ,h} .  Pasting the two packings QI and Q2 to- 

gether gives our desired packing. 

Having completed the inductive step for the case in which T is decomposable, 

we will assume from now on that it is not decomposable. As in the proof  of 

uniqueness, let d be the unique vertex other than b which forms a triangle together 

with a and c. I fa ,  b,c, dare the only vertices of T, then existence follows from the 

hypothesis on 3:d. Therefore we assume that this is not the case. Let P0 be the 

point of intersection of Da and De. 

6.1. LEMMA. In $e there is a continuous one parameter family o f  sets P~, 

t E (0,1], which satisfies: 

(1) P ~ C D ,  t@ (O,1l, 

(2) P~ touches each o f  the two arcs Da,Dcfor  t E (0,1], 
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(3) Pie touches Db, and 

(4) as t --+ 0 the sets P} shrink to Po. 

PROOF OF LEMMA 6.1. Take a continuous one parameter  family of  simple 

curves Y t, t E (0,1 ], in D - { P0 } so that (a) 3' 1 = Db, (b) each y t has one endpoint 

on D,  and the other endpoint on De, (c) the trilateral E t C D bounded by parts of  

yt ,D~,Dc is decent, and (d) E t is contained in an arbitrarily small neighborhood 

of  p0 for t sufficiently small. Clearly such a family (yt)  exists. 

For each t E (0,1], 5:d contains a unique set P~ C E t which touches all three 

edges of  E t. To verify that P~ is continuous in t, consider some point t E (0,1] 

and a sequence ti E (0,1] converging to t. Since ~Yd is continuous, by passing to a 

subsequence if necessary, we may, and will, assume that p~i converges to a set A, 

and A E ~Yd or A consists of  a single point. But clearly, A is contained in the 

trilateral E t and touches each of its edges. So A is not a single point, A E 5:d, and 

we have A = P~, by uniqueness. This establishes continuity. The other claims of  

the lemma are obvious. • 

CONTINUATION OF THE PROOF OF 5.2. Let P~, t E (0,1], be as in the lemma. 

Fix some t E (0,1]. In D - P~ there is a unique connected component  whose 

boundary intersects each one of the sets P~,, Db, De. See Fig. 6.1. Let us denote the 

closure of  this connected component  by D ' .  We will view D ~ as a (decent) 

trilateral D t ~ t ' = D '  = (Da,Db,D[),  with Da N (P~ U Da), D [ , = D ' f ' l D b a n d D [ =  

D t CI De. It should be emphasized that we are joining D t (h P~, and D t f3 Da to one 

edge on D t. 

Let T '  be the graph obtained from T by dropping the vertex d and all the edges 

Fig. 6.1. The trilateral D t. 
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adjacent to it, and inserting an edge between a and any neighbor of  d which isn't 

already a neighbor of  a. From our assumption that T is not decomposable, it fol- 

lows that T '  is a triangulation. See Fig. 6.2. T '  is (isomorphic to) the triangula- 

tion obtained by coalescing a and d in T. 

We now use the inductive hypothesis for the triangulation T '  with respect to the 

trilateral D t. It implies that there exists a packing Qt = (Q~: v E v -  [d]) in D t 

whose nerve is T ' ,  and which s~ttisfies Q~ = D~, v = a, b, c, and Q[ E 5:o, v E V - 

[a ,b ,c ,d} .  Let p t  = (p~: v E V) be the packing defined by P~ = Q~, v E v - 

{a ,b ,c ,d] ,  P~ = Do, v = a,b,c,  and P~ as defined above. The packing p t  is al- 

most what we need: for every v, w E Vwhich neighbor in T, we know that the cor- 
t t responding sets Pv,Pw touch, except for the case v E [a,d} ,  w E V -  [a ,b ,c ,d}  

and the symmetric case w E {a.d],  v E V -  [a ,b ,c ,d] .  When w neighbors with 

a or d, we know that Pt  w touches Pat or P~. 

Now let e be the vertex other than c which neighbors with a and with d in T, as 

in Fig. 6.2. The case e = b is easily ruled out by our assumptions that T is not 

decomposable and that a, b, c, d are not the only vertices of  T. Proposition 5.2 now 

follows from the following two lemmas. 

6.2. LEMMA. There is some' t E (0,1 ] for  which P J touches both P~ and P~. 

6.3. LEMMA. [ f  Pt  e intersects both P~ and P~, then the packing p t  has nerve T. 

PROOF OF LEMMA 6.3. By the above, all that needs to be verified is that for 

v E [a,d},  w E V -  [a ,b ,c ,d ,e}  which neighbor in T, P~ and Pt  w intersect. (The 

set of  edges in the nerve cannot strictly contain the set of  edges in a triangulation, 

b 

a ~c a ~ ¢  
(a) (b) 

Fig. 6.2. (a) The triangulation 7". (b) The resulting T'. 
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by planarity.) We will consider only the situation v = d. The other case is treated 

similarly. 

Let b = v0, vl . . . . .  vn = c be the neighbors of a in T in circular order. We 

have e = vn_2, d = vn-1. Because Vo ---, vl ~ • • • ---, vn-2 = e is a path in T' ,  and 

because Pe t touches P~ which touches Dc, there is a path a from Db to Dc with 

C U~-I ~ P~j. It can also be arranged that o~ is disjoint from every P~, v :~ 

Vo, Vl . . . . .  v~. D - o~ consists of  two connected components. One of  them inter- 

sects D~ and the other intersects Da. The union U v~ v-l a, vo ..... v,I p t  is connected 

(by indecomposability), and intersects D~ t. Therefore it doesn't  intersect Da. 

Clearly, w ~ a, Vo . . . . .  v~ (again by indecomposability), and so Ptw is disjoint 

from D~. But w neighbors with a in T'. Therefore Ptw intersects Qt = O t O (P~ U 

Da). Thus P~ intersects P~, and the proof of  6.3 is complete. • 

PROOF OF LEMMA 6.2. Let A C (0,1] be the set of parameters t for which Pe t 

intersects Pat, and let B C (0,1 ] be the set of parameters t for which Pe t intersects 

P~. By construction, p t always intersects p t  O P~, and thus A 13 B = (0,1 ]. We 

need to show that A and B intersect. 

In order to see that A and B are closed sets, we will first show that the packings 

p t  depend continuously on t. The argument is like the argument in the proof of  

Lemma 6.1 showing that P~ depends continuously on t. Let t~, n = 1,2 . . . . .  be a 

sequence in (0,1] converging to t E (0,1]. Let Kv = l i m ~ P ~  ", v E V, assuming, 

as we may, by continuity of the ~Y~, that these limits exist. (We use the definition 

of set convergence introduced in Section 2.) K = (K~: v E V -  {d}) is an ( a p r i o r i  

possibly degenerate) packing. It is clear that K~ and Kw intersect whenever v ,--, w 

is an edge in T'. Every K~, v E V -  { a , b , c } ,  which is not a single point must be 

in 5:~, by continuity of the ~Y~, and therefore is a blunt set. We want to see that all 

K~'s are not points. To see this, let U be a connected component of the set of ver- 

tices in V which correspond to K~'s which are points. We have a, b, c ~ U. Let 

U'  be the set of vertices in V -  U which neighbor with some vertex of U. Clearly, 

U'  contains at least three vertices. All the sets Kv, v E U, intersect, and therefore 

they are the same point. This shows that the intersection of  all the sets K~, u E 

U', is nonempty, but this is impossible, because it is impossible for more than two 

blunt sets in a packing to touch at a single point. This contradiction leads us to 

conclude that none of the K~'s are single points. 

So K is a packing, and the nerve of  it contains every edge in T'. Being a planar 

~The reader may wish to compare this argument with the ring lemma of [R-S]. They are closely 
related. 
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graph, this forces the nerve to be T'. From uniqueness we conclude that K = p t ,  

and continuity is established. This continuity implies that A and B are closed. 

To see that B ~ (0,1] consider a packing p0 = (pO: v ~ V -  [d]) which satis- 

fies the conditions pO = Dr,  v = a,b,c, p O E  5:v, v E V -  [a,b,c,d],  and has 

nerve T'. This packing exists, by the inductive hypothesis. The sets pO, v 4: a, c 

cannot contain the point P0, where Da and Dc meet. Therefore they are all disjoint 

f rom P~, for t sufficiently small. Thus, by uniqueness, P~ = pO, v 4: a, c, d, for t 

sufficiently small. For these t we then have p t disjoint from P~. So B 4: (0,1 ]. 

For t = 1 the set P~ intersects with Db. This shows that D 1 is disjoint from Do. 

Thus P)  cannot intersect Do, and A ~ (0,1]. 

We have seen that A and B are closed, that their union is (0,1], and that A :~ 

(0,1] ~: B. Because (0,1] is connected, it follows that A and B must intersect. This 

establishes Lemma 6.2, and also Proposit ion 5.2. • 

7. Proof of the Main Packing Theorem 3.2 

In the proof  of  3.2 we may restrict our attention to some neighborhood of  D. 

It is therefore sufficient to consider only the case where U is simply connected. By 

appeal to Proposition 5.2, we see that 3.2 reduces to the following lemma. 

7.1. COMPATIBILITY LEMMA. Let U C S 2 be open and simply connected. Let 5: 

be a packable collection on U. Then any two sets in 5: are compatible. 

PROOF. Let E, F be two sets in 5:. Let E '  be the set obtained from E by adjoin- 

ing to E all but one of the connected components of  the complement of  E, and let 

F '  be similarly related to F.. 

I f  E '  = F ' ,  then, clearly, there is some cornered trilateral which they both pack. 

Therefore E and F both pack it, and so it follows that E = F. With the intention 

of reaching a contradiction we assume that E , F  are not compatible. From the 

above, it follows that E '  4: F '  are incompatible. Say E '  cuts F'.  

Case 1, E '  D F'. Let p , q  be two distinct points in F '  - in te r ior (E ' )  which can- 

not be connected by a path in in te r ior (F '  - E ' ) .  Because E '  D F', p ,q  E E ' ,  and 

therefore p ,q  E OE'. Let o~ be a simple path connecting p and q in in te r io r (F ' ) .  

It obviously cuts E '  in two, and we see that also F '  cuts E ' .  I f  F '  D E ' ,  then 

F '  = E ' ,  contrary to our previous conclusions. Thus, by exchanging F and E, we 

have reduced the proof  to the ,;econd case: 

Case 2, F '  - E '  4: Q. Consider some point r @ F '  - E ' .  Because p and q can- 

not be connected by a curve in in ter ior (F '  - E ' ) ,  it follows that the same is true 

for p and r or for q and r. Thus we may, and will, assume that p ~ E ' .  There is 
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some curve connecting p and q in the complement of E' .  By replacing p and/or  q 

by other points along this curve, we can make a reduction to the situation where 

p and q are connected by some curve in the complement of E '  U/ ; ' .  Assume that 

this is the case. 

Let a~ and c~2 be the two arcs of a F '  between p and q. If E '  is disjoint from the 

relative interior of  oq then one can perturb al slightly so that it connects p and q 

in inter ior(F '  - E ' ) .  This contradicts our assumption, and therefore there is a 

point s E relint(a~) fq E'.  Similarly, let t be a point in relint(o~2) f3 E'.  Summariz- 

ing, we have points p, s, q, t in cyclic order on OF' with s, t E E' ,  p ~ E ' ,  and p, q 

are connected by a curve in the complement of  E '  U F'.  

Case 2a, E '  - ({s, t } U interior(F')) ~ 9 .  In this case we construct a cornered 

trilateral D so that both the sets E '  and F '  pack it. See Fig. 7.1a. 

To make the construction explicit, let W be the connected component of the 

complement of E '  U F '  which has p and q on its boundary. We start with a sim- 

ple closed curve 7 in Wwhich follows closely c9 Wf3 ( E '  U F ' ) ,  and goes around 

E '  U F' .  Near p we fix a point v0 C "r to be a vertex of the trilateral. We modify 

3' slightly near Vo, so that it has a corner at v0, and so that it touches F '  right be- 

fore and right after Vo. We also slide 3' to O(E'  U F ' )  so that it touches q and 

touches E '  in at least three points, but remains in W. It is possible to do this be- 

cause we are assuming E ' -  (Is, t] U interior(F'))  :~ 9 .  Furthermore, we make 

sure that of the points where 3' touches E '  there will be at least one in each rela- 

tively open arc of  3' from Vo to q. (Note that s, t E E ' . )  Now choose points v~, v2 

on 3' that are just slightly after the first intersection of 3' with E ' ,  when traveling 

from Vo in each of the two directions. Make small corners in 3' on v~ and v2, by 

1 ,,/.~,:.:~ (-'~ ~ ~i:') ~'::i:!:i:::~:::::::~: 

F '  

~0 

(a) 

v 

(b) 

Fig. 7.1. T h e  cons t ruc ted  tri laterals.  
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first moving slightly away from E '  U F ' ,  if necessary. This gives a cornered 

trilateral which both F '  and E '  pack. Therefore both E and F pack this cornered 

trilateral, contrary to our assumptions. 

Case 2b, E '  C ([s, t ] U inter ior(F ')) .  We have OF' N E '  = [s, t }. We construct 

another cornered trilateral. See Fig. 7. lb.  Take a simple closed curve 3  ̀which 

touches F '  at s and t, is otherwise disjoint from F'  in some neighborhoods of s and 

t, touches E '  in some other point, say in w, but is disjoint from E '  - [s , t ,w] .  

(3` can be obtained from OF' by some simple modifications.) Choose three verti- 

ces, and make three small corners in 3' interleaved between the points s, t, w, and 

call the resulting cornered trilateral D. E '  is packed in D, and therefore E is also 

packed in D. 

Now perturb this trilateral D in the vicinity of  s, so that the boundary of the new 

tr i lateral /)  is disjoint from F '  near s. There is some set/~ E 5: which packs/) .  By 

continuity and uniqueness, E i,; as close as we wish to E, p r o v i d e d / )  is close 

enough to D. Therefore, provided the perturbation was small, /~ intersects the 

boundary of F '  near s and t and is disjoint from p and q. Fur thermore, /~  is not 

contained in F '  in the vicinity of  s. This reduces the proof  to Case 2a. 

Thus the proofs of  the lemma and of 3.2 are complete. • 

7.2. REMARK. Only in 2b was continuity used. The proof  for the other cases 

shows that if two topological closed disks are not compatible, then either there is 

some trilateral which both of them pack, or one is contained in the union of the 

interior of the other and two points on its boundary. 

8. Equivalent definitions for 'packable': Proof of 3.5 

PROOF OF (1) ~ (2). It follows from Lemma 7.1 that every two sets in 5: are 

compatible. To see that 5: is a 3-manifold, consider first the case that U is an open 

disk. By applying a diffeomorphism, we will assume that U = R 2. Choose a (geo- 

metric) triangle T in R 2. To each homothetic copy of T there exists a unique set 

in 5: which packs that triangle. This gives a bijective mapping between 5: and the 

set of  triangles homothetic to T It is easy to see that this mapping is bi-continu- 

ous, and 5: is topologically R 3. 

If U is not a topological open disk, then U = S 2. In this case, for A E 5: take 

some p ~ A. The collection { B e- • :p  ~ B } is a neighborhood of A in 5: which is 

homeomorphic to R 3. So • is a 3-manifold. 

PROOF OF (2) ~ (3). This is easy, and also follows from the Uniqueness Lem- 

ma 5.3. 
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PROOF OF (3) = (I). We need to see that to each cornered trilateral D C U there 

is s o m e  A E 5: which packs it. Again,  consider first the case that U is topological ly  

an open disk. Because we can use approximations  and convergence,  it is sufficient 

to  examine  the case where  D is a d i f f eomorphic  image o f  a (geometric)  triangle. 

By  applying a d i f f e o m o r p h i s m ,  assume that U = R 2 and D is a triangle.  To  each 

c o m p a c t  K C R E containing more than one point, there is a unique homothetic 

copy f ( K )  of D so that K packs f ( K ) .  L e t f '  be the restriction o f f  to ft. 

We need to show that D E f '  (5:). The mapping f '  is, obviously, continuous, and 

is injective,  by (3). From our def ini t ion o f ' c o n t i n u o u s  col lect ion' ,  it fo l lows  that 

f '  is a proper map.  B e c a u s e f '  is injective and 5: is a 3-manifo ld ,  using invariance 

o f  d om ai n ,  we see that f '  is an open  map from 5: to the col lect ion o f  triangles 

h o m o t h e t i c  to D. Being open  and proper,  it fo l lows  that f' is surjective. (The 

set of triangles homothetic to D is connected.) This proves (3) = (1) for the case 

U #: S 2. 

If U = S 2, take some A E ~Y and somep  ~ A. [B E • :p ~ B] is then packable 

on U - [p}. It follows that to each q E S 2 there is some A E 5: so that q ~ A. 

Choose q ~ D. [ B ~ 5: : q ~ B } is packable on U - [ q }, and so there is some B E 

5: which packs D. • 
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